Generalized Constant Solid Angle ODF and Optimal Acquisition Protocol for Fiber Orientation Mapping

نویسندگان

  • Amith Kamath
  • Iman Aganj
  • Junqian Xu
  • Essa Yacoub
  • Kamil Ugurbil
  • Guillermo Sapiro
  • Christophe Lenglet
چکیده

Recent advances in diffusion MRI have allowed for improved understanding of the white matter connectivity. Models like the Diffusion Tensor, diffusion Orientation Distribution Function (ODF) with a monoexponential signal decay have shown good fiber reconstruction accuracies. More complex radial signal decay models, like the bi-exponential model, have been shown to better approximate the in-vivo diffusion signal. In this paper, we generalize the Constant Solid Angle ODF (CSAODF) algorithm to handle any q-space sampling and exploit the biexponential model. Simulation results to optimize the reconstruction and acquisition parameters are described. Finally, the algorithm is validated on human brain data. Our generalized CSA-ODF model performs optimally with 200 q-space data points distributed over three shells acquired at b = 1000, 2000s/mm and in the range [3000, 6000]s/mm for the third shell. Crossings up to about 30 degrees can be recovered, and fiber orientations can be detected with a precision of about 1 degree.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Q-Shell ODF Reconstruction in Q-Ball Imaging

Q-ball imaging (QBI) is a high angular resolution diffusion imaging (HARDI) technique which has been proven very successful in resolving multiple intravoxel fiber orientations in MR images. The standard computation of the orientation distribution function (ODF, the probability of diffusion in a given direction) from q-ball uses linear radial projection, neglecting the change in the volume eleme...

متن کامل

MULTIPLE q-SHELL ODF RECONSTRUCTION IN q-BALL IMAGING By

Q-ball imaging (QBI) is a high angular resolution diffusion imaging (HARDI) technique which has been proven very successful in resolving multiple intravoxel fiber orientations in MR images. The standard computation of the orientation distribution function (ODF, the probability of diffusion in a given direction) from q-ball uses linear radial projection, neglecting the change in the volume eleme...

متن کامل

RECONSTRUCTION OF THE ORIENTATION DISTRIBUTION FUNCTION IN SINGLE AND MULTIPLE SHELL Q-BALL IMAGING WITHIN CONSTANT SOLID ANGLE By

Q-ball imaging (QBI) is a high angular resolution diffusion imaging (HARDI) technique which has been proven very successful in resolving multiple intravoxel fiber orientations in MR images. The standard computation of the orientation distribution function (ODF, the probability of diffusion in a given direction) from q-ball data uses linear radial projection, neglecting the change in the volume ...

متن کامل

ACCURATE ODF RECONSTRUCTION IN Q-BALL IMAGING By

Introduction: Q-ball imaging (Tuch 2004) is a high angular resolution diffusion MR imaging technique proven successful in resolving multiple intravoxel fiber orientations. Standard computations of the orientation distribution function (ODF, the probability of diffusion in a given direction) from q-ball use radial projections and do not consider the solid angle, resulting in distributions differ...

متن کامل

Estimation of White Matter Fiber Orientations with the Funk-Radon and Cosine Transform

INTRODUCTION MR tractography methods depend on the accurate estimation of orientation distribution functions (ODFs) from diffusion MRI data. A new ODF estimation method called the Funk-Radon and Cosine Transform (FRACT) was recently introduced for this purpose [1]. The FRACT is a linear method that generalizes the previous Funk-Radon Transform (FRT) [2]. While the FRACT is as easy to characteri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012